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Based on the parabolic approximation, a refraction-diffraction model for linear water 
naves is developed. With the assumption that the water depth (refraction index) is 
slowly varying, the model equation describes the forward-scattered wavefield. Two 
examples are considered in particular: (i) wave diffraction by a long thin barrier on 
a uniform slope, and (ii) wave convergence over a semicircular step shoal. For the 
former problem, a similarity solution in terms of Fresnel integrals is obtained for the 
\\rarefield in the neighbourhood of the shadow boundary. For the latter problem, the 
resulting Schrodinger equation is solved numerically. The wavefield near the caustics 
as well as in the shadow region is obtained and compared with experimental data. 

1. Introduction 
The parabolic approximation has been used recently for studying wave forward- 

scattering problems in many physical fields such as optics, acoustic waves, electro- 
magnetic waves and shallow water waves (e.g. Kriegsmann & Larsen 1978; Candel 
1979; Mei & Tuck 1979). The approximation uses the fact that in the shadow boundary 
of a scatter, the modulation of wave amplitude is more rapid in the direction tangential 
to wave fronts than in the direction of wave rays; both wave fronts and rays are 
defined according to the geometrical ray theory. The disparity of scales leads to an 
approximate parabolic partial differential equation of the Schrodinger type, which 
describes the diffraction effects of slowly-varying refractive index in the forward 
scattered wave field. The primary advantage of this approximate approach is its 
relative simplicity in obtaining solutions either analytically or numerically. 

In this paper, we derive formally a parabolic approximation to the linearized water 
wave theory via an asymptotic method. The index of refraction associated with the 
variation of bottom topography is always assumed to be slowly varying. The theory 
developed herein, unlike the work by Mei & Tuck (1980) and LeBlond & Mysak (1978), 
is not restricted to long-wave theory. The leading order parabolic approximation is 
applied to two physical problems: (i) the combined wave refraction and diffraction 
by a semi-infinite thin barrier installed on a uniformly sloping bottom, and (ii) the 
ware convergence over a stepped bottom. In the first problem a similarity solution 
for the wavefield is found in the neighbourhood of the shadow boundary where the 
classical wave ray theory fails. We find that when the curvature of the wave rays is 
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ignored in the parabolic approximation, our solution reduces to that derived by Liu & 
Plfei (1 976). The curvature of the rays is important in the shallow water region for the 
case of a sloping beach. I n  the second problem, the parabolic approximation is used 
to study the wavefield in the vicinity of caustics, where the classica81 wave ray theory 
again fails. Numerical solutions are obtained for specific cases which were investigated 
experimentally by Whalin (1 97 1) .  Good agreement between the experimental data 
and the present numerical results is observed. 

2. General formulation 
We first summarize the linearized governing equations and boundary conditions for 

small amplitude water waves (see, for example, Wehausen & Laitone 1960, p. 640). 
Cartesian co-ordinates (2, Q, 8) are employed and fixed on the mean free surface 2 = 0,  
where 2 is positive upwards. The undisturbed water depth is described by& = - i (2,$).  
Assuming that the fluid is inviscid and the wave motion is irrotational, we may intro- 
duce the velocity potential 

6 = &2,$, 2) e-iGt 

for studying the time-periodic progressive waves with a given frequency a. The 
gradient of the velocity potential gives the velocity vector. 

The following dimensionless variables are adopted herein using the inverse of the 
frequency 6-I as the time scale and Q/G2 as the horizontal length scale: 

where all variables with circumflexes represent physical quantities and the small 
parameter 6 characterizes the mild bottom slope. 

I n  the first-order theory of small amplitude waves the velocity potential is governed 

(2.2) 

Qz-@ = 0, z = 0; (2.3) 

(2.4) 

P A @  + QZ2 = 0, -h  < Z < 0; 
by 

@2+62Vh. V@ = 0,  z =  -ha 

where A = a2/ax2+ a2/ay2, V = (a/ax, a/ay) and the subscript z represents the differen- 
tiation with respect to  z. 

2.1. Asymptotic ray theory 

The classical ray theory of water wave refraction on a slowly varying water depth is 
summarized herein. We assume that, for small 8, the velocity potential has the follow- 
ing asymptotic expression (Keller 1958): 

0 N {a(., y )  + SA(O)(x, y, z )  + 0(a2)} cosh cexp (i6-lS) (2.5) 

where 6 = k(z  + h) and k (x ,  y )  is the local wavenumber satisfying the dispersion relation 

(2.6) ktanhkh = 1. 

Using standard procedures, we obtain the following equations for the leading terms 
in (2.5): 

(VS)' = k2, (2.7) 
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where 
(VS)  . V(a21)  + (AS)  a21 = 0; 

sinh 21th C, 
2k C 

- I =  

and C, is the group velocity, while Cis the phase velocity. Equation ( 2 . 7 )  is the eikonal 
equation of geometrical optics, the characteristics of which are called rays. Along a 
ray, the transport equation for the amplitude function a, (2.8), may be written 
(Keller 1958) as 

( 2 . 1 0 )  o2Ik d r  = &a2 -O sinh 2kh dr = constant 

where dr is the differential of the width of a strip formed by the rays. Equation ( 2 . 1 0 )  
states that the energy flux is constant along a strip of rays. 

For later use we should point out that the leading-order surface displacement, 
q ( = (%I2/$), can be expressed as 

C 
C 

7 = i@(x ,  y, 0) e-it = ia(x ,  y)  cosh kh exp [i(&-lS - t ) ]  ( 1  + O(6) )  ( 2 . 1 1 )  

in which the quantity la cosh khl is the leading-wave amplitude. 
In view of ( 2 . 1 0 )  the ray theory breaks down, when the caustics (dr  = 0) appear in 

the wave field. Otherwise, the leading-order ray theory is accurate up to O(6) and 
the size of the domain of validity is O( l/S) (Keller 1058). 

2 . 2 .  Propagation equations in the parabolic approximation 

For forward scattering problems where the diffraction effects of the refractive index 
become important, to extend the classical ray theory and its domain of validity we 
propose a velocity potential 

CD N F(p,  c-r, z )  {a(., y) + SA(O)(x, y, z )  + 82A(l)(z, y, z )  + . . .} cosh Ceis-ls, ( 2 . 1 2 )  

where (p,  a) are curvilinear and orthogonal co-ordinates defined by the rays (p  = con- 
stant) and the wave fronts (c-r = constant). The corresponding physical variables 
( p ,  6) are defined as (see ( 2 . 1 ) )  

(p, 4 = (&A 88) (@/i?). ( 2 . 1 3 )  

Inserting ( 2 . 1 2 )  into (2 .2) - (2 .4) ,  we obtain the following equations: 

+ 8{[A$t) cosh 5 + 2 k A 9  sinh 5 + i (AS)  a cosh 51 F 
+ 2 iVS.  V(a cosh 6) F + 2 i ( V S .  V F )  a cosh 5 
+ 2[A(!)  cosh 5 + kA(O)sinh 51 F, + A(0)'lpZ, cosh c} 

+82{[AL\)coshg+ 2kA(i)sinh5+i(AS)A(O)coshY] F 
+ 2iVX. V(FA(O)cosh 4)  + A(Fa cosh 5 )  
+ 2 [ A ( f )  cosh 5+ kA(l)sinh 51 F, + AC1)FS, cosh [} = 0, 

{ [ k 2 -  ( V L ~ ) ~ ]  F + + , , ) ~ c o s h ~  

- h < z < 0 ;  ( 2 . 1 4 )  

Fa[k sinh kh - cosh kh] + '1pa cosh kh 
+ G(F[A(O)(k sinh kh - cosh kh) +A(:) cosh kh] + FzA(0) cosh kh) 

+ 62{F[A(1)(k sinh kh - cosh kh) + A$) cosh kh] 

+ F,A(')cosh Eh) + 0(a3) = 0, x = 0;  ( 2 . 1 5 )  
23-2 
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u,Fz + 6([A(0,) + i ( V S  . V h )  a]  F + A@)F’(”,) 
+ S2{F[A(8) + i (VS . Vh) A@)] + V h  . V ( F a )  

+ F,A(l)) + O(a3) = 0, z = - h. (2.16) 

The complex-valued function F in (2.12) is intended to describe the deviations of the 
wave field manifest over a long distance from the classical ray theory due to  effects of 
diffraction. We also anticipate that the diffraction factor E varies slowly within a 
wavelength but faster in the direction of a wave front than it does along a wave ray 
so that 

Rewriting the above equations in terms of dimensionless variables from (2.13) we get 

(2.17) 

This constitutes the basic assumption for the parabolic approximation. To incorporate 
these features into mathematics, we introduce a small parameter c ,  which is a function 
of 6, and stretched co-ordinates 

p “ =  €-I& 5 = €U, E = €22 (2.18) 

and write P(P, 5 , g )  = F(q7, E-%, e-2Z) with a formal expansion 

P = P(O)(P, 5 )  + €P(l)(P, 5,  E )  + O(62). (2.19) 

Substituting (2.18) into (2.17), we find that 

s = €3. (2.20) 

Therefore, the choice of the stretched co-ordinates (2.18) incorporated with the para- 
bolic approximation allows us to  examine the variations of the diffraction factor P 
along the ray direction within a distance 0(6-*), since 5 = &?ijz/~. 

Inserting (2.18)-(2.20) intogoverning equations (2.14)-(2.16), we obtain, after some 
manipulations, a set of equations for a ,  A(k), and P ( k )  as power series in E .  The details 
of the resulting power series are presented in the appendix. Equating the coefficients 
of different power in B of the power series to zero, we find that if the amplitude function 
a(x, y) and the phase function S are precisely the same ones as described by classical 
ray theory, (2.6)-(2.8), the governing equations are satisfied up to O(c3) .  Equating the 
coeficients of O(e4) terms in the power series yields the leading-order parabolic 
approximation 

where 
2ikP$) + A(;) P(0) = 0 (2.21) 

(2.22a) 

(2.22b) 

and h,,) and h(p) are the scale factors, giving the ratios of differential distances to the 
differentials of the co-ordinate parameters. Since the co-ordinates (p ,  (+) are orthogonal, 
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then ( d ~ ) ~  = h ( 2 , , ( d ~ ) ~  + h$?,(dp)2; ds is the arclength differential. Equation (2.21) indi- 
cates that owing to diffraction the wave energy diffuses across the wave rays. More- 
over, the effects of ray curvatures are included in the parabolic approximation. The 
remaining higher-order terms in the power series provide successive governing equa- 
tions of coupled systems for the diffraction terms F(k) and the refraction terms ACk) 
(see appendix ). 

In  summary, the leading-order velocity potential of the parabolic approximation 
is given as 

@ = P(O)(P, 3) a(x ,  y) [I  + 0(84)] cosh {e"-'s (2.23) 

where a(x,y) and X(x,y,t) are obtained from the ray theory, while the diffraction 
factor P(O) satisfies the Schrodinger equation (2.21). Note that the leading-order solu- 
tion has a uniform error O ( 6 f )  which is larger than that of the leading-order ray theory, 
O(6). However, the size of the domain of validity for the parabolic approximation is 
greater than that of the ray theory. I n  $ 3  we use the technique developed here to 
study the combined refraction and diffraction wave field in the neighbourhood of a 
thin barrier installed in a slowly varying water depth. 

2.3. Parabolic approximation near a caustic 

It is well-known that the wave ray theory fails near a caustic because the theory gives 
an infinitely high wave amplitude in the vicinity of the caustic. Moreover, there exists 
a shadow region on the other side of the caustic, where the wave amplitude is zero. 
Within the framework of linear wave theory this difficulty can be overcome by employ- 
ing a uniform asymptotic theory (e.g. Chao 1971; Ludwig 1964; Shen & Keller 1975). 
Unfortunately, the numerical implementation of the uniform ray theory is usually 
very complicated for practical uses. I n  this section we intend to show that with a slight 
modification the parabolic approximation developed in the previous section can be 
used to compute easily the wavefield in the vicinity of a caustic. 

For a given bottom topography z = - h(x,  y)  the classical wave ray theory predicts 
the existence of a caustic in a certain region R. We introduce a modified topography 
z = - E(x, y) in the same region R such that the wave field associated to  il can be 
described as 

6 = Z(x, y) [1 -t O(S)] cosh ceis-'S, (2.24) 

in the entire region €2 according to  wave ray theory; no caustic exists. I n  (2.24) a and 
are the amplitude fnnction and phase function, respectively, and l== C(z + g) with 

the wavenumber C satisfying the dispersion relation E tanh EZ = 1 .  The difference 
between the actual bottom topography z = - h and the modified topography z = - 7E 
is small so that 

- 

k2 = $2 - €4 V ( X ,  y), (2.25)t 

where k is the wavenu. iber associated with h, i.e. k tanh kh = 1, and V ( x ,  y) is bounded 
as 6 tends to zero. Now we can view the wave field in the neighbourhood of the caustic 
predicted by ray theory as the result of the diffraction of the refracted wave field 6, 
(6.24), due to the topographical deviation, i~ - E .  In other words, we can approximate 

t From the dispcrslori rcltltiori and ( 2  25), \vo ctcd~~ce tlmt O(h  -h) = o([n,-kl/(~la/~oi),) = 
O ( ~ ~ B / k ( d k / d h ) , ) .  It should be pointed out, Iio\\cvor, tliat tlio slioiolinc singiilaiity (Siioii 1 9 i 2 )  
IS riot bomg stitdiod licre. 
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Thin barrier 

4 

incident wave ray 
FIGURE 1. Sketch of the beach topography and the location of the thin barrier. 

the leading-order velocity potential associated with the actual bottom topography 
z = - h as follows: 

@ N P(O)(j5) 3) {a cosh <ei8-lE) ( 2 . 2 6 )  

where ( j5 ,  3) are the stretched curvilinear co-ordinates associated to the ray pattern 
of 8. We remark here that any difference in a choice of m would lead to a different 
diffraction factor F@); there is, in other words, a trade-off between the wave refraction 
and wave diffraction. The governing equation for the diffraction factor Fco) can be 
obtained by following the same procedure presented in the previous section with an 
exception that the bottom boundary condition must be evaluated as z = - m. Thus 

2iil.p:) + A  P O )  - VF(0) = 0. ( 2 . 2 7 )  

The differences between the preceding equation and ( 2 . 2 1 )  are the appearance of the 
V term in ( 2 . 2 7 )  and the fact that the curvilinear co-ordinates (j5)3) are associated 
with the phase function 8. The true bottom topography enters into ( 2 . 2 7 )  in the term 
VP(O). The wave behaviour near the caustic, including the shadow region, should be 
contained in the solution of F(0). 

We conclude this section with a remark that the leading-order approximation of 
the wave field given in ( 2 . 2 6 )  has a uniform error 0(6*) which is consistent with the 
uniform ray theorydeveloped by Chao (1971, equation (16)). In view of the fact that 
it  is relatively simple to solve ( 2 . 2 7 )  numerically, the parabolic approximation serves 
as a convenient alternative for describing the wave field near a caustic. Of course 
when the nonlinear effects become important, both uniform ray theory and the para- 
bolic approximation need to be modified to accommodate the nonlinearity. 

( P )  

3. Combined refraction and diffraction by a thin barrier 
As the first example for the parabolic approximation, we consider the combined 

diffraction and refraction wave field in the neighbourhood of an impervious barrier. 
The barrier with an infinitesimal thickness is installed on a mildly sloping beach as 
shown in figure 1.  Using the co-ordinate system defined in this figure the leading-order 
solutions for wave refractions as given by ray theory are 

k a, 2k,  h, + sinh 2 k ,  h, 
(3.1) 
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X 

FIGTJRE 2. Separate rcgiotis according to geornotrical optic theory. 

S ( x ,  y) = py - u ax,  

p = k ( x )  sin 8 = k, sin 8,. 

IX 
where 

CI(X) = k cos 0 ,  

are the x and y components of the local wavenumber vector k(x) and O(x) is the angle 
of incidence. The sitbscript 00 refers to infinity, where the water depth is h,. The 
orthogonal co-ordinates (p, (T) representing the rays and the phase lines can be written 
&S 

(T = (y-yo)- f" cotoax, (3.4) 

wliere (ro,yo) is chosen to be the location of the tip of the barrier. The rays are des- 
cribed by p = constants and the curve (T = constant describes a line of constant phase. 
For later use we observe that 

h,,, = sin 0,  h(p)  = cos 0 .  (3.5) 

According t,o geometrical wave rap theory, the entire wave field can be divided into 
three regions (see figure 2 ) .  I n  the shadow region T ,  which is bounded by the critical 
incident wave ray p = 0 and the barrier, the wave action is zero. I n  the reflexion 
region TT,  which is boiindetl by the breakwater and the critical reflected wave ray 
p' = 0, the wave action is the super-position of the incident wave and the reflected 
wave. I n  the incident region I11 which is the complement of the shadow and reflexion 
region, the wave action does not feel the appearance of the barrier. Across the critical 
rays, p = 0 and p' = 0,  the wave action experiences discontinuities, which suggest the 
invalidity of the geometrical ray theory in these neighbourhoods. To remedy this 
problem, Liu, Lozario & Pantazaras (1979) developed a uniform asymptotic theory. 
One of the disadvantages of this latter approach is the substantial amount of numerical 
work required in its implementation. 

The problem can be solved approximately but efficiently, however, by adopting the 
parabolic approximations in the neighbourhood of the critical rays. We illustrate this 
point by considering only the clownwave side of the barrier. To include the effects of 
diffr:trt,ion, from (2.12) the leading-order potential can be written as 
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0 2: P(O){acosh<}exp (i&l&'), (3.6) 

where a and S are given by (3.1) and (3.2), respectively. Substituting (2.22) and (3.5) 
into (2.21)) we find that P(O) satisfies the following equation 

An approximation proposed previously by Liu & Mei (1976) is the same as (3.7) except 
that in their work the last term on the left-hand side of (3.7) is missing. Keeping this 
term in the parabolic approximation, we have taken the curvature of rays and phase 
lines into consideration. It is easy to show that fron Snell's law (3.3) and the definition 
of the phase lines (3.4), the following is true: 

In  the case of a shallow water waves, 1 k2h, we may rewrite (3.8) as follows: 

Therefore, the effects of the curvature of rays become increasingly important as waves 
propagate towards the shoreline. 

Equation (3.7) may be rewritten in the following form 

where 

(3.10) 

(3.11) 

Equation (3.10) is the same as that of Liu & Mei (1976) iff e 1. We now replace the 
independent variables (p", 3)  by ( 6 ,  v), where 

v = tan 8 d 3 ,  c = (cot 0)i dp.  (3.12)) (3.13) 
0 

Equation (3.10) becomes 
aZpi(0) ap(0) 
-+2i-- = 0. (3.14) at2 a v  

The boundary conditions for P(0) are 

(3.15) 

The similarity solution to (3.14) and (3.15) can be found in terms of Fresnel integrals, 

P(0) = 241" + c ( [ / ( n v ) i ]  + i[h + X(E/(nv)g)]} .  e - i i n ;  (3.16) 
where 

(3.17) 

me sine and cosine Fresnel integrals. 
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FIGURE 3 .  W ~ \ T  - t an k configti ration. 

From (3.16) i t  is clear that  the boundary of the transition zone can be defined by 
[ / ( ~ I J ) &  = constant, which is a sort of parabolic with the critical ray p = 0. ;is it axis. 
Within this transition zone the refracted-diffracted wave may be viewed as a refracted 
wave with modulated wave amplitude and phase both talong and normal to the wave 
rays p = constants. The diffraction factor IP(0)) diminishes monotonically for [ < 0 
(in shadow region), and approaches one ns 6 --f co (incident region) in an  oscillatory 
manner. 

4. Wave convergence due to bottom topography 
In this section we demonstrate with an example how the pardwlic approxini' J t' 1011 

can be used to study a wave field where, according to classical my theory, caustics 
appear owing to bottom topography. The set-up of Whslin's (197 1) wave-tank 
experiments is used to define the example so that his experimental data can be used 
as a verification of the approximate theory. 

Whalin's experiments were conducted in a wave tank with the horizontal dimensions 
25.603 m x 6.096 m. A wave-malier ivss installed at  the deep portion of the channel 
(y = 0). In  the middle portion of the channel, 7 . 6 2  m < y < 14.81 m, eleven semi- 
circular steps were evenly spaced and led to the slialloiver portion of the channel 
(figure 3). At the other end portion of the channel (y > 21.34 m) 11 very shallow beach 
with h slope was installed to dissipate (with the aid of wave absorber) most of the 
incoming wave energy and to rediice wave reflexions to minimum. The equations 
approximating the bottom topography are given as followst (JVlialin 197 1) : 

0-4572 

0.4572 + (C - ~ ) / 2 5  

(0 < y < 10.67 - G ( x ) ) ,  

(10.67 - G Q ZJ < 18.29 - G),  h ( ~ ,  y) = 

0.1524 (18.29-G < y 6 21.34), (4.1) 

(4.2) 

i 
where 

G ( x )  = [ ~ ( 6 . 0 9 6 - ~ ) ] 4 ,  0 < r~ < 6.096. 

t In this section variables are dirnrnxioiml (MKS system). 



714 C. Lozano and P .  L.-F. Liu 

25.0 22.5  2 0 4  17.5 15  0 I 2 3  10.0 5 .O 

FIGURE 4. Convergence of wave rays for T = 3 s. 
Y ( i n )  

The bottom topography is symmetric with respect to  the centre-line of the wave tank, 
x = 3.048 m. 

In Whalin’s experiments simple harmonic waves with periods T = 1, 2, and 3 s, 
were generated. Owing to  the mild slope ( z A) the reflexions from topography were 
negligible. Using the classical ray theory described in 5 2.1, we compute the wave ray 
patterns for T = 3 s (figure 4).  It is apparent that the ray pattern possesses two line 
singularities (caustics) which merge a t  a singular point (cusp point: y = 20 m, 
x = 3.048 m). The entire wave field can be divided into three subregions: ( 1 )  An 
incidence region bounded by the wave-maker, the lateral walls of the wave tank and 
the cusped caustic, ( 2 )  the shadow regions where no ray exists, and (3) a divergence 
region covered by rays emerging from the cusped caustic. The ray theory is clearly 
not applicable in the shadow region and in the neighbourhood of the cusped caustic. 

To solve the problem by the parabolic approximation, we choose the modified 
bottom topography % as follows: 

0.4572 (0 < y < 7.62); 

%(x,Y) = 0*4572-(~-7*62) /25  (7.62 < y 6 15.24); i 0.1524 (15.24 < y < 21-34). (4.3) 

The wave rays corresponding to the plane waves travelling on the ramp described by 
(4.3) are simply straight lines, x = xo (0  < xo 6 6.096). The wave action a(x, y), which 
is the shoaling factor in this case, can be obtained readily from (2.10). Thus 

where the subscript 0 denotes the physical quantities evaluated a t  the location of the 
wave-maker, i.e. y = 0. The corresponding phase function B(x, y) can be written as 

~ ( x ,  Y) = I0*k (y’) dy’ + (4.5) 

where iL. satisfies the dispersion relation in terms of h. 

topography h described in (4.1 ) can be written as 
As discussed in 3 2.3 the leading-order velocity potential corresponding to the true 

CD - P@)(p, 5) {II. eosh E(z + %) exp (ia-ls)}, 



Refraetion-diffraction model for linear surfme wave8 

FIGURE 5. The variations of V (  = k2 - k 2 ) .  
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22. I4 20.12 18-10 16.08 14.06 12.04 10.02 8.00 

Y (rn) 
FIGURE 6. Contour lines of IP'o)12 for T = 3 8. 

where F O )  can be viewed as the diffraction factor caused by the topographical difference 
between h and K. Since the background waves are plane waves and propagate in the 
y direction, ( p ,  5) = (x, y )  and the parabolic equation for the diffraction factor, (2 .27) ,  
may be reduced to the Schrodinger equation in the following dimensional form: 

where 

and k is the wavenumber associated with the true bottom topography h(x, y) given 
by (4.1). The boundary conditions are 

and 
P 0 ) ( x ,  0) = 1 ,  0 6 x < 6.096, 

aj7co) - = 0, x = 0, 6.096. 
ax 

The initial boundary-valueproblem described by (4.6)-(4.9) (y is a time-like variable) 
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c 0.75 

t X X 
" 

X 

0 0 bl I 2 2  I 8 3  2 44 3 05 
t (111) 

0.6 I I . 22  1 4 3  2.44 3.05 0 

x (nl) 

I?~GURF: 7 .  'rlie potential rnergy flux: (a )  at y = 5.80 for T = 2, M A D  = 4.0 ; ( h )  at !J = 18.90 
for T = 2 s, M A D  = 2.6%. 

can be solved numerically by the standard Crank-Nicholson method. The distribution 
of the potential V ( x ,  y), which is always non-negative, is shown in figure 5. I n  figure 6 
we present the contour lines for IF(O)/z period, T = 3 s.  It is interesting to point out 
that the feature of two interesting waves near the downstream corners of the tank 
(y 3 22.0) is captured (see figures 4 and 6) .  

In Whalin's work (1 971), for each of the periods T = 1 , 2 , 3  s a set of three distinct 
wave amplitudes (here referred to as A M P  = 1 , 2 , 3  in the increasing order of magni- 
tude) was tested. For a given period and amplitude there were recorded three sets of 
d i j t i l  ( A ,  H ,  C) wit,h different arrangements of the locations of a total of twenty wave 
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0 0 61 I . 2 2  1.83 2.44 3.05 

x (m) 

I -04 c 
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FIGURE 8. Tho potential energy flux: (a) at  y = 5.80 for T = 3 s, N A D  = 2.3 yo ; 

( b )  at y = 18.90 for T = 3 s, X A D  = 3.Gy0. 

gauges. The wave-gauge stations 1-6 were always located along a straight line y = con- 
stant in the constant water depth region between the wave-maker and the first semi- 
circular step. Wave-gauge stations 7-1 2 were positioned along the perimeter of one 
ofthe semicircular steps; different steps mere chosen for different experimental set-ups 
( A ,  B, C). The gauge stations 13-20 were installed in the region of shallower constant 
water depth. Det<ailed information concerning the locations of wave gauges is referred 
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Station 
number 

7 
8 
9 

10 
1 1  
12 

Co-ordinates (m) T = 2 s  T = 3 s  

X ?f Experiment Theory Experiment Theory 
---A__-- - r-----h---, r---hl-. 7 

3.048 12.95 0.59 0.57 0.74 0.80 
2.590 13.00 0.47 0.56 0.73 0.80 
2.133 13.10 0.57 0.51 0.49 0.78 
1.676 13.30 0.45 0-44 0.66 0.74 
1.219 13.60 0.35 0.36 0.57 0.57 
0.609 14.20 0.27 0.27 0.36 0.43 

TABLE 1. Comparisons between theoretical results and experimental data. 

to Whalin (1971). The reported data (see Whalin 1971, p. 40, table 6) was the potential 
energy flux over a period, which can be expressed in terms of our notations as follows: 

(4.10) 

In  figures 7-8, we present the theoretical results (solid line) and experimental data 
(experimental set-up B, AMP = 1, Wha,lin 1971) of the potential energy flux at  cross- 
sections y = 5.80 and 18.90 for T = 2 and 3 s, respectively. As mentioned before the 
wave-gauge stations 7-1 2 were positioned along the perimeter of one of the semicircular 
steps. For the experimental set-up B, the locations of these wave gauges and experi- 
mental data of the potential energy flux are tabulated in table 1 for T = 2 and 3 s, 
respectively. The corresponding theoretical results are also listed in the table. Similar 
comparisons have been performed for the experimental set-ups A and C and can be 
found in Lozano (1979). The experimental data for T = 1 s is not used for comparison 
because in this case the reflexions from the semicircular steps become significant, 
which violates the basic assumption used in the theory. 

The relative error between the theoretical results and experimental data as shown 
in  figures 7-8 is defined as follows 

(4.11) 

0 
where E j  and Ei represent the theoretical and experimental potential energy flux at  
each wave-gauge station, respectively; ( E )  denotes the average of the theoretical 
values a t  a cross-section (y = constant), and N is the number of wave-gauge stations 
along the cross-section. In figures 7 and 8, all the relative errors are within 5 yo. The 
over all general qualitative agreement between the theoretical results and experimental 
data is reasonably good. We should point out that the cross-section y = 18-9 cuts across 
the caustics and the shadow region (see figure 4). As shown in figures 7(b) and 8 ( b )  
the parabolic approximation indeed predicts the wave focusing near the centre-line 
(caustic) and the wave decaying into the shadow region. 
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5. Concluding remarks 
In  this paper we have derived a parabolic approximation for studying combined 

refraction and diffraction problems based on linear water wave theory. The parabolic 
approximation accounts for both transversal diffusion of wave amplitude across wave 
rays and wave ray curvature. Theoretically we show that the leading-order solution 
of the parabolic approximation has a uniform error 0(6) ) ,  where 6 characterizes the 
mild slope, and the leading approximation is valid in regions at a distance O(6-3) from 
the given initial wave front. Two simple problems are employed in the paper to 
demonstrate the applicability of the method in that it is relatively easy to obtain 
solutions. We hope that after more systematic verification of the present theory by 
controlled laboratory experiments, the parabolic approximation can be used as an 
efficient tool for describing linear water wave refraction and diffraction. 

This research was supported in part by the Sea Grant Research Program at the 
. University of Delaware and at  Cornell University. The authors would like to thank 
Dr Robert G. Dean and Dr Robert Whalin for their stimulating discussions on the 
subject. 

Appendix 
Introducing the following notations and operators 

G ( A )  = AZ,cosh<+2kA,sinh<, 

H ( A )  = (AX) A cash<+ 2VX. V(A cash <), 

and substituting (2.19)-(2.27) into (2.16)-(2.18), we obtain 

{[k2 - (VAY)~] Pa cash <} + e3{P[G(A(0)) + iH(a ) ] }  
+ e4{ [ 2 i k P 9  + A(;) P@)] a cosh C} 
+ s5{[2ik&) + A(p3P(l)] a cosh 5+ 2Pj3 n . V(a cosh 5)  + P(5l;)a cosh c} 
+ EG{P(~)[G(A(~)) + iH(A(O)) + A(a cosh 5 ) ]  

+2P(pn. V(acoshc)+Pg acosh[+ 2(A(O)cosh5),~(Q) 

+ [2ik@) + A(p)p(2)] a cosh <} + O(e7) = 0, - 1 ~  G z < 0; 

Park sinh kh - cosh kh] 

+ s3{P[A(0)(k sinh kh - cosh kh) + A$)  cosh kh] + P(;) a cosh kh} 

+ e4@) a cosh kh + s5@ a cosh Ich 

+ eG{P(0)[A(’)(k sinh kh - cosh kh) + A(:)  cosh kh] 

+F(j)naoRhkh+ P($’A(O’Cosh k h } + O ( ~ ’ )  = 0, z = 0; 
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E ~ ( P [ A ( ~ )  + ~ ( V S  . ~ h )  a] +a@)> 
+ e4%(3) a + 65([I;i(E) + hppP(j)] a> 
+E~(%(O)[A(;)+~(VX. Vh)A(O)+Vh. Va]+E(j)a 

G. Lozano and P. La-F. Liu 

+ %(;)A(o)) + o ( 4  = 0, = - h .  (A 8) 

Equating the coefficients of each power of E t o  zero, we obtain the following sequence 
of problems: 

O(e0) : 
I ,  

k2-(VS)2 = 0; ktanhkh = 1. 
0 ( € 3 )  

0 (€4):  

The O(EO) problem confirms the wave ray pattern according to the geometrical optics 
theory. The O ( E )  and O(e2) problems provide no additional information. The O(e3) 
problem indicates that  if the leading wave action a indeed satisfies the transport 
equation (2.8) based on the ray theory, then 

A(;) = 0, F(g) - = 0 for z = 0, (A 17) 

A(:)+i(VS.Vh)a = 0,  p($) = 0 for z = -h, (A 18) 

which leads to the boundary conditions for p(1). I n  O(e4) problem, (A 14) constitutes 
the leading-order approximation for the diffraction factor P(O). The governing equation 
for the diffraction factor P(l) can be found in O(e5) problem, i.e., 

[ 2 i k @  + A,,, Ffl) + F&J] cc cosh 5 = - 2P$) n . V(a cosh 5). (A 19) 
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